Vilniaus miesto viesbuciai
Apzvelgti Vilniaus m. viesbuciu kiekvieno men. kainas 1 parai 2 asmenims.
pip install mysql-connector-python
Requirement already satisfied: mysql-connector-python in c:\users\tommo\anaconda3\lib\site-packages (8.0.27) Requirement already satisfied: protobuf>=3.0.0 in c:\users\tommo\anaconda3\lib\site-packages (from mysql-connector-python) (3.19.1) Note: you may need to restart the kernel to use updated packages.
import numpy as np
import mysql.connector
import pandas as pd
mydb = mysql.connector.connect(
host="localhost",
port="3317",
user="root",
password="...",
)
cursor = mydb.cursor()
cursor.execute('USE baigiamasis')
viesbuciai = pd.read_sql('select * from viesbuciai_1 where kaina not in (0)', con=mydb)
viesbuciai
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2/1/2022 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 |
1 | 2 | Mabre Residence | 2/1/2022 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 |
2 | 2 | Mabre Residence | 2/1/2022 | Viesbutis | Maironio g. 13 | 57 | 18 | IN | 4 |
3 | 9 | Hilton Garden Inn Vilnius City Centre | 1/1/2022 | Viesbutis | Gedimino av. 44 B | 86 | 23 | IN | 4 |
4 | 9 | Hilton Garden Inn Vilnius City Centre | 1/1/2022 | Viesbutis | Gedimino av. 44 B | 71 | 23 | NOT IN | 4 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1546 | 8 | Artis Centrum Hotels | 2/16/2022 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 |
1547 | 8 | Artis Centrum Hotels | 3/11/2022 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 |
1548 | 8 | Artis Centrum Hotels | 8/15/2022 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1549 | 8 | Artis Centrum Hotels | 6/24/2022 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1550 | 8 | Artis Centrum Hotels | 7/6/2022 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1551 rows × 9 columns
# 1. Pakeistas datos formatas
from datetime import date, time, datetime, timedelta
viesbuciai['Data'] = pd.to_datetime(viesbuciai['Data'], format = '%m/%d/%Y')
viesbuciai
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2022-02-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 |
1 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 |
2 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 57 | 18 | IN | 4 |
3 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 86 | 23 | IN | 4 |
4 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 71 | 23 | NOT IN | 4 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1546 | 8 | Artis Centrum Hotels | 2022-02-16 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 |
1547 | 8 | Artis Centrum Hotels | 2022-03-11 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 |
1548 | 8 | Artis Centrum Hotels | 2022-08-15 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1549 | 8 | Artis Centrum Hotels | 2022-06-24 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1550 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 |
1551 rows × 9 columns
# 2.Kiek is viso viesbuciu.
viesbuciai.groupby('Pavadinimas').count()
Id_nr | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | |
---|---|---|---|---|---|---|---|---|
Pavadinimas | ||||||||
15th Avenue | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
A.V.Goda | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
AirInn Vilnius Hotel | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
Amberton Cathedral Square Hotel | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
Amicus Hotel | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
Urbihop Hotel | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Vilnius Apartments | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Vilnius City Hotel | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 |
Vivulskio Apart-Hotel | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
ibis Vilnius | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
62 rows × 8 columns
# 3.Kiek zvaigzduciu turi viesbuciai
Zvaigzduciu_sk = viesbuciai.groupby(['Zvaigzduciu_sk'])
Zvaigzduciu_sk
Zvaigzduciu_sk['Pavadinimas'].value_counts()
Zvaigzduciu_sk Pavadinimas 1 Jeruzale Hotel 36 2 Stay Express Hotel 19 3 AirInn Vilnius Hotel 38 CALVARY Hotel & Restaurant Vilnius 38 Corner Hotel 38 .. 5 Grand Hotel Kempinski Vilnius 19 Imperial Hotel & Restaurant 19 NARUTIS hotel 19 Hotel PACAI 17 Relais & Châteaux Stikliai 16 Name: Pavadinimas, Length: 62, dtype: int64
# 4. Kokie viesbuciai siulo/nesiulo pusryciu.
viesbuciai[viesbuciai['Pusryciai'] == 'NOT IN'].groupby('Pavadinimas').count()
viesbuciai[viesbuciai['Pusryciai'] == 'IN'].groupby('Pavadinimas').count()
viesbuciai.groupby('Pusryciai')['Pavadinimas'].count()
Pusryciai IN 872 NOT IN 679 Name: Pavadinimas, dtype: int64
# 5. viesbuciai suskirstyti su pusryciais arba be
Pusryciai = viesbuciai.groupby(['Pusryciai'])
Pusryciai
Pusryciai['Pavadinimas'].value_counts()
Pusryciai Pavadinimas IN AirInn Vilnius Hotel 19 Amberton Cathedral Square Hotel 19 Artagonist Art Hotel 19 Artis Centrum Hotels 19 CALVARY Hotel & Restaurant Vilnius 19 .. NOT IN A.V.Goda 5 City Hotels R?dninkai 5 Green Vilnius Hotel 5 Hotel Apia 5 Artis Centrum Hotels 1 Name: Pavadinimas, Length: 98, dtype: int64
# 6. Vieno kvadrato nuomos kaina
viesbuciai['Kvadrato_kaina'] = viesbuciai['Kaina'] / viesbuciai['Kambario m²']
viesbuciai
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | Ketvirtis | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2022-02-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 |
1 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 | 2.222222 | 2022Q1 |
2 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 57 | 18 | IN | 4 | 3.166667 | 2022Q1 |
3 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 86 | 23 | IN | 4 | 3.739130 | 2022Q1 |
4 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 71 | 23 | NOT IN | 4 | 3.086957 | 2022Q1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1546 | 8 | Artis Centrum Hotels | 2022-02-16 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 | 3.130435 | 2022Q1 |
1547 | 8 | Artis Centrum Hotels | 2022-03-11 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 | 3.130435 | 2022Q1 |
1548 | 8 | Artis Centrum Hotels | 2022-08-15 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 |
1549 | 8 | Artis Centrum Hotels | 2022-06-24 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q2 |
1550 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 |
1551 rows × 11 columns
# Didziausias siulomas kambarys
viesbuciai.iloc[:, [6]].max()
Kambario m² 53 dtype: int64
# Maziausias siulomas kambarys
viesbuciai.iloc[:, [6]].min()
Kambario m² 6 dtype: int64
# 7. Vidutine kaina , kvadratu skaicius
viesbuciai.iloc[:, [1, 5, 6, 9]].mean()
Kaina 82.601547 Kambario m² 18.551257 Kvadrato_kaina 4.445634 dtype: float64
# 8. Auksciausia Kaina
viesbuciai.groupby('Data')['Kaina'].max().max()
viesbuciai[viesbuciai['Kaina'] == 452]
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | |
---|---|---|---|---|---|---|---|---|---|---|
1033 | 49 | Imperial Hotel & Restaurant | 2022-12-01 | Viesbutis | Subaciaus g. 2 | 452 | 53 | IN | 5 | 8.528302 |
1034 | 49 | Imperial Hotel & Restaurant | 2022-12-25 | Viesbutis | Subaciaus g. 2 | 452 | 53 | IN | 5 | 8.528302 |
# 9. Zemiausia kaina
viesbuciai.groupby('Data')['Kaina'].min().min()
viesbuciai[viesbuciai['Kaina'] == 34]
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | |
---|---|---|---|---|---|---|---|---|---|---|
737 | 37 | Vilnius Apartments | 2022-09-01 | Viesbutis | Sv. Stepono g. 8 | 34 | 16 | NOT IN | 3 | 2.125 |
739 | 37 | Vilnius Apartments | 2022-11-01 | Viesbutis | Sv. Stepono g. 8 | 34 | 16 | NOT IN | 3 | 2.125 |
740 | 37 | Vilnius Apartments | 2022-12-01 | Viesbutis | Sv. Stepono g. 8 | 34 | 16 | NOT IN | 3 | 2.125 |
741 | 37 | Vilnius Apartments | 2022-12-25 | Viesbutis | Sv. Stepono g. 8 | 34 | 16 | NOT IN | 3 | 2.125 |
viesbuciai.groupby('Data')['Kaina'].mean().plot(kind='barh', figsize=(7,7))
<AxesSubplot:ylabel='Data'>
# 10. Sukurtas ketvircio stulpelis.
viesbuciai['Ketvirtis'] = viesbuciai['Data'].dt.to_period('q')
viesbuciai
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | Ketvirtis | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2022-02-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 |
1 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 | 2.222222 | 2022Q1 |
2 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 57 | 18 | IN | 4 | 3.166667 | 2022Q1 |
3 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 86 | 23 | IN | 4 | 3.739130 | 2022Q1 |
4 | 9 | Hilton Garden Inn Vilnius City Centre | 2022-01-01 | Viesbutis | Gedimino av. 44 B | 71 | 23 | NOT IN | 4 | 3.086957 | 2022Q1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1546 | 8 | Artis Centrum Hotels | 2022-02-16 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 | 3.130435 | 2022Q1 |
1547 | 8 | Artis Centrum Hotels | 2022-03-11 | Viesbutis | Totoriu g. 23 | 72 | 23 | IN | 4 | 3.130435 | 2022Q1 |
1548 | 8 | Artis Centrum Hotels | 2022-08-15 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 |
1549 | 8 | Artis Centrum Hotels | 2022-06-24 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q2 |
1550 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 |
1551 rows × 11 columns
# 10.1. sukurta bendra lentele su ketvircio kainomis max/vid/min
Ketvirciai_mean = viesbuciai.groupby(['Ketvirtis','Pavadinimas', 'Id_nr'])['Kaina'].mean().reset_index()
Ketvirciai_max = viesbuciai.groupby(['Ketvirtis','Pavadinimas', 'Id_nr'])['Kaina'].max().reset_index()
Ketvirciai_min = viesbuciai.groupby(['Ketvirtis','Pavadinimas', 'Id_nr'])['Kaina'].min().reset_index()
Ketvirciai_1 = Ketvirciai_mean.join(Ketvirciai_max, on='Id_nr', how='inner', lsuffix='_mean', rsuffix='_max')
Ketvirciai = Ketvirciai_1.join(Ketvirciai_min, on='Id_nr', lsuffix='_min')
Ketvirciai = Ketvirciai.drop(['Ketvirtis_max', 'Pavadinimas_max', 'Id_nr_max', 'Ketvirtis', 'Pavadinimas', 'Id_nr'], axis = 1)
Ketvirciai.rename(columns={'Ketvirtis_mean':'Ketvirtis', 'Pavadinimas_mean':'Pavadinimas', 'Id_nr_mean':'Id_nr', 'Kaina':'Kaina_min' }, inplace=True)
Ketvirciai
Id_nr_min | Ketvirtis | Pavadinimas | Id_nr | Kaina_mean | Kaina_max | Kaina_min | |
---|---|---|---|---|---|---|---|
0 | 34 | 2022Q1 | 15th Avenue | 34 | 60.0 | 55 | 47 |
62 | 34 | 2022Q2 | 15th Avenue | 34 | 66.8 | 55 | 47 |
118 | 34 | 2022Q3 | 15th Avenue | 34 | 78.0 | 55 | 47 |
168 | 34 | 2022Q4 | 15th Avenue | 34 | 78.0 | 55 | 47 |
1 | 58 | 2022Q1 | A.V.Goda | 58 | 46.0 | 50 | 35 |
... | ... | ... | ... | ... | ... | ... | ... |
116 | 53 | 2022Q2 | Vivulskio Apart-Hotel | 53 | 35.0 | 167 | 83 |
61 | 19 | 2022Q1 | ibis Vilnius | 19 | 50.6 | 272 | 232 |
117 | 19 | 2022Q2 | ibis Vilnius | 19 | 88.8 | 272 | 232 |
167 | 19 | 2022Q3 | ibis Vilnius | 19 | 113.6 | 272 | 232 |
213 | 19 | 2022Q4 | ibis Vilnius | 19 | 104.0 | 272 | 232 |
214 rows × 7 columns
# 10.2 apibendrintos kainos pagal ketvirti
viesbuciai.groupby('Ketvirtis')['Kaina'].min()
viesbuciai.groupby('Ketvirtis')['Kaina'].max()
viesbuciai.groupby('Ketvirtis')['Kaina'].mean()
Ketvirtis 2022Q1 272 2022Q2 292 2022Q3 292 2022Q4 452 Freq: Q-DEC, Name: Kaina, dtype: int64
minimali kaina - 34 maksimali kaina - 452
viesbuciai.groupby('Ketvirtis')['Kaina'].mean().plot(kind='barh', figsize=(10,5))
<AxesSubplot:ylabel='Ketvirtis'>
# 11. sukurtos lenteles su kainomis max/vid/min pagal zvaigzduciu sk su kiekviena data
Zvaigzdes_1 = viesbuciai.groupby(['Zvaigzduciu_sk', 'Data'])['Kaina'].max().reset_index()
Zvaigzdes_1
Zvaigzdes_2 = viesbuciai.groupby(['Zvaigzduciu_sk', 'Data'])['Kaina'].min().reset_index()
Zvaigzdes_2
Zvaigzdes_3 = viesbuciai.groupby(['Zvaigzduciu_sk', 'Data'])['Kaina'].mean().reset_index()
Zvaigzdes_1
Zvaigzduciu_sk | Data | Kaina | |
---|---|---|---|
0 | 1 | 2022-01-01 | 40.000000 |
1 | 1 | 2022-02-01 | 40.000000 |
2 | 1 | 2022-02-16 | 40.000000 |
3 | 1 | 2022-03-01 | 40.000000 |
4 | 1 | 2022-03-11 | 40.000000 |
... | ... | ... | ... |
89 | 5 | 2022-09-01 | 186.714286 |
90 | 5 | 2022-10-01 | 187.428571 |
91 | 5 | 2022-11-01 | 190.000000 |
92 | 5 | 2022-12-01 | 205.800000 |
93 | 5 | 2022-12-25 | 205.800000 |
94 rows × 3 columns
# 11.1. apibendrintos kainos pagal zvaigzduciu skaiciu
viesbuciai.groupby('Zvaigzduciu_sk')['Kaina'].min()
viesbuciai.groupby('Zvaigzduciu_sk')['Kaina'].max()
viesbuciai.groupby('Zvaigzduciu_sk')['Kaina'].mean()
Zvaigzduciu_sk 1 40.000000 2 43.842105 3 58.439222 4 88.846871 5 180.164062 Name: Kaina, dtype: float64
Minimali: 1 - 36, 2 - 42, 3 - 34, 4 - 40, 5 - 53. Maksimali 1 - 44, 2 - 52, 3 - 120, 4 - 167, 5 - 452
# 13. Viesbucio vidutine kaina pagal zvaigzdutes
viesbuciai3 = viesbuciai_1.groupby(['Zvaigzduciu_sk', 'Ketvirtis_Q'])['Kaina'].mean().reset_index()
viesbuciai3[viesbuciai3['Zvaigzduciu_sk'] == 5]
# 1 zv. - kaina nesikeicia
# 2 zv. - kaina didziausia 1 ketv.
# 3 zv. - kaina didziausia 3 ketv.
# 4 zv. - kaina didziausia 3 ketv.
# 5 zv. - kaina didziausia 4 ketv.
Zvaigzduciu_sk | Ketvirtis_Q | Kaina | |
---|---|---|---|
16 | 5 | 2022Q1 | 166.542857 |
17 | 5 | 2022Q2 | 183.000000 |
18 | 5 | 2022Q3 | 180.485714 |
19 | 5 | 2022Q4 | 196.086957 |
# 14. sujungta lentele viesbuciai su ketvirciu lentele.
viesbuciai_1 = pd.merge(viesbuciai, Ketvirciai, on=['Id_nr'], suffixes=('_v', '_k'))
viesbuciai_1
viesbuciai_1 = viesbuciai_1.drop(['Ketvirtis_k', 'Pavadinimas_k'], axis=1)
viesbuciai_1.rename(columns={'Pavadinimas_v':'Pavadinimas','Ketvirtis_v':'Ketvirtis_Q','Kaina_mean':'Kaina_mean_Q','Kaina_max':'Kaina_max_Q', 'Kaina_min':'Kaina_min_Q'}, inplace=True)
viesbuciai_1
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | Ketvirtis_Q | Kaina_mean_Q | Kaina_max_Q | Kaina_min_Q | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2022-02-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 |
1 | 1 | Ivolita | 2022-03-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 |
2 | 1 | Ivolita | 2022-01-01 | Viesbutis | Geliu g. 5 | 55 | 25 | IN | 3 | 2.200000 | 2022Q1 | 49.000000 | 55 | 47 |
3 | 1 | Ivolita | 2022-02-16 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 |
4 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 | 2.222222 | 2022Q1 | 51.200000 | 67 | 40 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
5841 | 8 | Artis Centrum Hotels | 2022-06-24 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q2 | 72.000000 | 72 | 72 |
5842 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 78.833333 | 97 | 72 |
5843 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 78.000000 | 82 | 72 |
5844 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 82.000000 | 82 | 82 |
5845 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 72.000000 | 72 | 72 |
5846 rows × 14 columns
# 15. Jeigu paros kaina didesne nei vidutine ketvircio paros kaina grazina True
viesbuciai_1['Ar_pasiekia_vidurki'] = np.where(viesbuciai_1['Kaina'] >=viesbuciai_1['Kaina_mean_Q'], 'True', 'False')
viesbuciai_1
Id_nr | Pavadinimas | Data | Kategorija | Adresas | Kaina | Kambario m² | Pusryciai | Zvaigzduciu_sk | Kvadrato_kaina | Ketvirtis_Q | Kaina_mean_Q | Kaina_max_Q | Kaina_min_Q | Ar_pasiekia_vidurki | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Ivolita | 2022-02-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 | False |
1 | 1 | Ivolita | 2022-03-01 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 | False |
2 | 1 | Ivolita | 2022-01-01 | Viesbutis | Geliu g. 5 | 55 | 25 | IN | 3 | 2.200000 | 2022Q1 | 49.000000 | 55 | 47 | True |
3 | 1 | Ivolita | 2022-02-16 | Viesbutis | Geliu g. 5 | 47 | 25 | IN | 3 | 1.880000 | 2022Q1 | 49.000000 | 55 | 47 | False |
4 | 2 | Mabre Residence | 2022-02-01 | Viesbutis | Maironio g. 13 | 40 | 18 | NOT IN | 4 | 2.222222 | 2022Q1 | 51.200000 | 67 | 40 | False |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
5841 | 8 | Artis Centrum Hotels | 2022-06-24 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q2 | 72.000000 | 72 | 72 | True |
5842 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 78.833333 | 97 | 72 | True |
5843 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 78.000000 | 82 | 72 | True |
5844 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 82.000000 | 82 | 82 | True |
5845 | 8 | Artis Centrum Hotels | 2022-07-06 | Viesbutis | Totoriu g. 23 | 82 | 23 | IN | 4 | 3.565217 | 2022Q3 | 72.000000 | 72 | 72 | True |
5846 rows × 15 columns
import matplotlib.pyplot as plt
viesbuciai_1.plot.bar(x='Ketvirtis_Q', y='Kaina_mean_Q', figsize=(10,2))
plt.show()